skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Pham, Mia"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A multi-variable investigation of thunderstorm environments in two distinct geographic regions is conducted to assess the aerosol and thermodynamic environments surrounding thunderstorm initiation. 12-years of cloud-to-ground (CG) lightning flash data are used to reconstruct thunderstorms occurring in a 225 km radius centered on the Washington, DC. and Kansas City Metropolitan Regions. A total of 196,836 and 310,209 thunderstorms were identified for Washington, D.C. and Kansas City, MO, respectively. Hourly meteorological and aerosol data were then merged with the thunderstorm event database. Evidence suggests, warm season thunderstorm environments in benign synoptic conditions are considerably different in thermodynamics, aerosol properties, and aerosol concentrations within the Washington, D.C. and Kansas City regions. However, thunderstorm intensity, as measured by flash counts, appears regulated by similar thermodynamic-aerosol relationships despite the differences in their ambient environments. When examining thunderstorm initiation environments, there exists statistically significant, positive relationships between convective available potential energy (CAPE) and flash counts. Aerosol concentration also appears to be a more important quantity than particle size for lightning augmentation. 
    more » « less